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ABSTRACT

The bulk second order closure method Of Garwood

(1977) is used to predict the well-mixed layer Aspth and

temperature evclution at Ocean Station Papa for th years

1953-1969. The time dependent boundary conditions are the

specification of the surface buoyancy flux and wind stress

Sderived from the three-hourly atmospheric observations. Much

c cf the variance of the well-mixed layer depth and

temperature evolution is obviously associated with the

annual cycle. However, a closer inspection of the results

reveals a variability related to the synoptic response of

sea-surface temperature and mixed layer depth to both stronq

and liqht wind events. The simulations are not intended to

be a best fit, but rather a demonstration of the capability

of a one-dimensional model to simulate the interannual

variability observed at OWS Papa.
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1. INIRODUC!ION

Ocean Station Papa (50N,145W) in the east-rn North

Pacific Ocean has been the site of a number of one-

dimensional mcdel simulations of the oceanic planetary

koundary layer or mixed layer. Using the bulk model of Kraus

and Turner (1967) at this site, Denman and Miyake (1973)

first simulated the mixed la yer re sponse to local

atmospheric fcrcing during June 1970 for a twelve-day

period. Mellcr and Durbin (1975) applied a profile (rather

than bulk) turbulence closure model to simulate a few weeks

of upper ocean thermal structure evolution for the same time

of the year (late spring but after the mixed layer had

shallowed). Camp and Elsberry (1978) used three versions of

the bulk mixed layer model (Elsberry et al, 1976; Kim, 1976;

and Kraus and Turner, 1967) to study periods of fall and

early winter deepening in response to strong atmospheric

fcrcinq at a number of locations, including Ocaan Station

Papa. The lengths of these model integrations were up to a

month, and a number of different years were examined. The

Mixed Layer Experiment (MILE) of August 18 to September 5,

1977 was also situated at Ocean Staion Papa. At least two

different model simulations have bee . conducted of the MILE

period; Garwccd (1978) and Davis et al (1982). All of the

above model simulaticns at Ocean Staticn Papa were of

relatively short duration, and all were during the same half

of the year, namely between the ionths of May and December

after the seascnal thermocline had been set up.

4 3



For abcut 30 years, from the early 1950's until

1981, the Canadian Goverment sponsored a nearly contiuuous

collection of meteorological and oceanographic data at Ocean

Station Papa. The Canadian Goverment has recently

terminated ship activities at Papa, thus interupting one of

the few data sets available to oceanoqraphers who wish to

study lonq term variability in the upper ocean. Suck

observations have included BT drops, air temperature,

humidity, wind measurements and sky cover.

The purpose of this study is to report th multi -

year evclution of the ocean thermal structure predicted by a

boundary layer entrainment model in response to forcing

parameters calculated from observations taken at OWE Papa.

In spite of the existence of this long time series of

observations, until now no model simulaticns hive W eB

reported which are for more than a few weeks in duration,

and no study has previously been conducted of tke

- interannual variability in the ocean mixed layer response to

the atmosphere. Also, no simulations have previously beer

conducted for the period of spring transition (usually

between March and may at Ocean Station Papa) when the

seasonal thermccline is set up. The purposo of this paper is

to document the results of a series of seventeen consecutive

mcdel integrations (each of one year in duration) that for

the first time take full advantage of the continuity of the

data set.
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2. METHOD

The bulk seccnd order closure method of Garwood

(1977) is employed as the OPBL model. The required time

dependent surface boundary conditions is the specificat-on

of the surface buoyancy and momentum flux which are

calculated usinq bulk aerodynamic formulae (Camp and

Elsberry,1978). The forcing is calculated from the

cbservations taken every three hours. Except for the

parameterizaticn of the shear production of turbulence,

. there is no calculation of the momentum budget in this

study. For each c4 the seventeen years, the model Is

initialized with a mixed layer depth, mixed laysr

temperature, a temperature ump at the base of the mixed

layer and a bottom temperature (in this case 200 m) to which

the temperature decreases linearly from that temperature

just below the initial mixed layer depth (see Table I for

these values). Each cf the model runs is also ini-ialized

with a salinity profile that is a constant 34 ppt down to

the mixed layer depth, decreases linearly to 35 ppt down to

a depth cf 150 m and remains a constnt 35 ppt below 150 m.

This salinity profile contributes to the late winter mixed

layer, but has no influence upon the evolution of the

4 seasonal thermccline because the surface salinity flux is

zero. This is equivalent to precipitation balancing

evaporation.

4
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of freedom which can be thought of as "tuning parameters".

For all seventeen years of integration, only one set of

tuning rarameters is used. These tuning parameters were

calibrated in such a way so that the maximum summer
temperature predicted by the model for 1959 is in agreement

with the maximum summer temperature observed at OWS Papa

during that year. The year 1959 represents no special case

t rather a random choice. This was not intended to be a

best fit or optimal tuninq in this study, but a

demonstration cf the relative interannual variability that

can be simulated by a cne dimensional model.

3. RESULTS

Each year at OWS Papa is represented by a sot of

seven figures labeled a-q. Those figures marked $a' are 4-he

- observed mixed layer depths from BT drops. The mixed layer

depth was defined to be that depth where the water

temperature first deviated by .2 C from the surface value.

Figures marked 'b' are the model predicted time evolution of

water temperature. The mixed layer depth can be inferred

from the tight packing of isotherms. Figures marked c-g are

a four day running mean of the time series of the observed

sea-surface temperature, air temperature, dew point

temperature, win d speed and percenta ge of cloudiness

respectively.

For the most part, the seventeen figures are self

.vident. It is reccommended that the reader peruse them
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consecutively, looking for interannual differences and

similarities. This shculd be followed by a much closer

inspection of each year, with particular attention paid to

the synoptic response of sea-surface temperature and mixed

layer depth to both strong and Ligh + wini events.

Most of the variances in the dew point, se.a and air

temperatures are obviously associated with the annual cycle.

The air (dry bulb) temperature in all of these cases range

frcm winter lows of about 4 C or 5 C to summer highs ranging

near the 14 C cr 15 C mark. On the average, the wind speeds

are higer in the winter than they are in the summer,

although the highest values are attained in the latE fall.

Oddly enouqh, the percentaqe of cloudiness is at a minimum

when storm activity is at a peak, and maximum cloudiness

cccurs in the summer.

Since the model predicted values were only saved

cnce a day, the diurnal signal is not evident here, and the

annual cycle is the dominant signal. Initially, the mixed

layers are deep and the sea-surface temperatures are low.

Then, scmetime in sprinq, the upper-ocean winter regime

qives way to a summer reqime during which the mixed layer is

much shallower and the sea-surface temperatures are much

hiqher. As fall approaches and +he frequency of storms

increase, the mixed layer becomes progre3sively deeper until

once aqa-n the winter regime is restored. There is a limit

tc mixed layer deepening since the disspipation lergth scale

7



ij.

is limited by the planetary rotation scala U*/f, where U*

is the model computed turbulent velocity scale. This

prevents the mixed layer from becoming infinitely deep. The

kalocline prescribed as an initial condition, also may limit

deep mixing for some years, as revealed by model

inteqrations having no halocline (not shown here).

Perhaps the most striking feature in the year--o-

year variability of the model hindcas-.s is the way the

winter reqime is transformed into a summer regime. This

phencmenon is sometimes called 'spring transition'. During

the spring, the winds are lighter and there is an increase

in the ret dobnward heat flux into the mixed layer. The

combination of the lack of turbulent kinetic energy to

maintain a deer mixed layer and the formation of a layer of

.-ucyant water due to heating, allows a new mixed layer to

reform at a shallower depth. In many cases, tho transition

has an almost sudden occurrence as is the case for 1959

(Fig. 7a), while with cther cases, the change from a winter

to a summer regime is more gradual and occurs in two or more
O

steps as in 1957 (Fig. 5a). As suggested by Elsberry and

Garwood (1978), the date of spring transition strongly

influences summertime sea-surface temperatures. An early

transiticn means that heat accumulates in a shallower

koundary layer for a long period of time and hence increases

summer sea-surface temperatures more than usual. Conversely,0

a late transition date will lead to relatively cooler summer

temperatures. At OWS Papa, spring transticL normally occurs

8



between Julian days 100 and 120.

In conclusion, the bulk methcd used here seems to be

capable of simulating the seasonal and synoptic-scale

variability observed at OWS Papa. Seventeen years of air-

sea observations and model integrations provide an extensive

test. Certainly other effects such as advection would be

needed to provide a complete explanation of ocean

variability at OWS Papa, but it is nevertheless encouraging

that one dimensional mixinq can account for a large part of

the variance on time scales from the synoptic to more than a

year.

9
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TABLE AND FIGURE CAPTIONS

Table I Listing of initial sea-surface temperature, mixed
layer depth, temperature jump at the base of the mixed layer
and temFerature at 200 meters for the years 1953-1969.

Fiq. 1. (a) Mixed layer depths from BT drops, (b) depth
vs. tire ccntours of temperature, (C) sea-sur face
temperature, (d) air temperature (e) dew point tempera~ure,
(f) wind speed and (g) cloud cover for year 1953.

Fiq. 2. As in Figure 1 but for 1954.

Fig. 3. As in Figure 1 but for 1955.

Fig. 4. As in Figure 1 but for 1956.

Fiq. 5. As in Figure 1 but for 1957.

Fiq. 6. As in Figure 1 but for 1958.

Fiq. 7o As in Figure 1 but for 1959.

Fiqo 8. As in Figure 1 but for 1960.

Fiq. 9. As in Figure 1 but for 1961.

Fiq. 10. As in Figure 1 but for 1962.

Fiq. 11. As in Figure 1 but for 1963.

Fig. 12. As in Figure 1 but for 1964.

Fiq. 13. As in Figure 1 but for 1965o

Fig. 14. As in Figure 1 but for 1966.

Fiq. 15. As in Figure 1 but for 1967.

Fig. 16. As in Figure 1 but for 1968.

Fiq. 17. As in Figure 1 but for 1969.
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Table I

Depth Temp. T jmp T bot

1953 100.0 5.6 0.9 3.4

1954 120.0 5.4 0.7 3.4

1955 115.0 5.9 1.2 3.4

1956 120.0 5.5 1.4 3.0

1957 100.0 5.7 0.9 3.4

1958 120.0 7.0 0.9 3.2

1959 105.0 6.0 0.6 4.0

1960 110.0 6.5 1.5 4.0

1961 110.0 5.7 0.7 4.3

1962 100.0 6.0 1.5 3.8

1963 125.0 6.3 1.3 4.0

1964 100.0 5.7 1.3 2.8

1965 120.0 5.0 0.6 2.8

4 1966 130.0 6.9 1.0 3.6

1967 120.0 6.6 1.4 3.2

1968 130.0 5.3 0.5 3.2

1969 110.0 5.6 0.8 3.2

13
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a- JFigure 14. (a) Mixed layer depths from BT drops,

(b) depth vs. time contours of temperature,

(c) sea-surface temperature, (d) air temperature,
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(g) cloud cover for year 1966.
40 0 G so 4 270o i

Juan Day

27



0 0 2 i

-6_a b
-200- -200 I

0 O 90 19 270 360 0 0 180 27;0 360
Juian Day Julian Day

20- 20-

a- -

0 o lo3O0 SO 150 27 360
Julian Day Julian Day

*20- 30-

o20-

J0uian Day Jia~nDay

Ia
Figure 1.WMxdlayer depths from OT drops,

(b)deph v. tmecontours of temperature,

4- W) sea-surface temperature, (d) air temperature,

2- (a) dew point temperature, (f) wind speed and
(g) cloud cover for year 1967.

0~
0 g0 490 270 360

4 kMw Day

28



0-i 0-..
-800 - 10-

W " I100 lao0

-160 I -150-
a b

-200 -200I
0 90 180 270 36O 0 90 180 270 360

Jlian Day Julan Day

20 20

1 16-

12- 12

4- 4-

0 0 90 10 270 380
- Jlian Day Julian Day

~20- 30-

20-

.*0-

* "

k 10_0_

- 5,. f
• " 0

0 ) O 130 90 180 270 360
All Julian Day Julan Day

;,---

a Fi : s Rgure 16. (a) Mixed layer depths from BT crops,
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